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Abstract

Many computer vision and image processing tasks re-
quire the preservation of local discontinuities, terminations
and bifurcations. Denoising with feature preservation is a
challenging task and in this paper, we present a novel tech-
nique for preserving complex oriented structures such as
junctions and corners present in images. This is achieved
in a two stage process namely, (1) All image data are pre-
processed to extract local orientation information using a
steerable Gabor filter bank. The orientation distribution at
each lattice point is then represented by a continuous mix-
ture of Gaussians. The continuous mixture representation
can be cast as the Laplace transform of the mixing den-
sity over the space of positive definite (covariance) matri-
ces. This mixing density is assumed to be a parameterized
distribution, namely, a mixture of Wisharts whose Laplace
transform is evaluated in a closed form expression called
the Rigaut type function, a scalar-valued function of the pa-
rameters of the Wishart distribution. Computation of the
weights in the mixture Wisharts is formulated as a sparse
deconvolution problem. (2) The feature preserving denois-
ing is then achieved via iterative convolution of the given
image data with the Rigaut type function. We present exper-
imental results on noisy data, real 2D images and 3D MRI
data acquired from plant roots depicting bifurcating roots.
Superior performance of our technique is depicted via com-
parison to the state-of-the-art anisotropic diffusion filter.

1. Introduction
Image denoising has a fundamental role in early visual

information processing. The role has a twofold purpose: 1)
removal of noise which obviously hampers the manual in-
terpretation by humans as well as the automated analysis by
computers, 2) the completion or enhancement of local dis-
continuities, terminations and bifurcations while preserving
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features. Smoothing techniques have been widely studied
in computer vision for many decades. Many of these meth-
ods locally smooth the image along one or several directions
chosen to favor smoothing along the image contours so that
the edges are not destroyed. Yet it is challenging to enhance
patterns with multiple orientations.

There is tomes of literature on image smoothing some of
which dates back to the 1970’s and is based on linear system
theory [17]. In the past fifteen years, there has been a flurry
of activity in the applied math community to develop feature
preserving image smoothing techniques motivated by the
work of Perona and Malik [15]. Their work was based on a
partial differential equation describing an anisotropic diffu-
sion filter, where the anisotropy was achieved via a scalar-
valued function defined on the image gradient field i.e., a
scalar diffusivity coefficient. Several anisotropic diffusion
filters were developed after this work, most of them address-
ing more general issues (generalizing the scalar diffusivity
to tensor-valued diffusivity etc.) and some addressing math-
ematical anomalies (leading to a “paradox”) in the original
formulation. We refer the reader to [1, 18] for details on
some of these techniques. It should be noted that none of
these methods addressed the issue of preserving features
that represented complex local geometries such as X, T or
Y junctions. In [2], a junction preserving filtering technique
was introduced using a morphological approach. This tech-
nique however requires the junctions to be detected prior
to smoothing. More recently, Tschumperlé [20] introduced
a curvature preserving smoothing and applied it to scalar,
vector and tensor-valued images. The results shown are
quite impressive for curvature preservation. What is unclear
is whether this technique can preserve junctions where the
curvature is not defined. Also, such junctions are not repre-
sentable by rank-2 tensors.

In the context of deriving local orientation information
from scalar-valued images that we will use in the first stage
of processing, there are several techniques that maybe ap-
plied and one of the most popular one is based on ap-
plication of Gabor filters. Gabor filters are well-known
quadrature filters which have been used widely in image
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processing applications including registration [11], texture
segmentation [4, 22] and edge detection. The main advan-
tage of these filters due to their Gaussian envelopes is that
they achieve the minimum space-frequency product speci-
fied in the uncertainty principle [6]. They are complex val-
ued functions obtained by modulating Gaussian functions
where modulating factor is complex exponential. They are
tunable to any desired frequency. Such tuning is particu-
larly useful in capturing any locally predominant orienta-
tions present in an image. One of the key drawbacks of Ga-
bor representations is the size of the filter bank one needs in
order to acquire useful information. This drawback may be
overcome by using steerable filters. Steerable filters pro-
vide an efficient platform to synthesize filters of desired
orientations from linear combinations of a set of basis fil-
ters, allowing one to adaptively “steer” a filter to any ori-
entation and to determine the filter output as a function of
orientation [5]. Several frameworks have been presented
to find the conditions under which any function steers and
also to design a suitable set of basis functions given any ar-
bitrary steerable function; examples include the Lie group
theory, SVD approach [19, 13]. More recently Kalliomaki
and Lampinen [7] present approximate steerability of Gabor
filters in 2D for pattern recognition purposes. In this paper
we formulate 3D steerable Gabor filters and exploit them to
extract orientation information required in the first stage of
the presented approach for junction preserving smoothing.

In this paper, we propose an efficient two-stage “tensor-
driven” process. The first stage includes the extraction of lo-
cal orientation information using steerable Gabor filters ap-
plied along several orientations. The second stage involves
iterative local convolution at each lattice point with a con-
tinuous mixture of Gaussians where the mixing distribution
is the mixture of Wisharts whose weights were obtained in
the first stage. Several experimental results on real data are
shown to depict the performance of our approach in junc-
tion preserving image denoising.

The remainder of this paper is structured in the following
way: We expand on the steerable Gabor filters in Section 2.
Continuous mixture model is presented in Section 3. Then
in Section 4, we present experimental results on synthetic
images and real data consisting of MRI data acquired from
plant roots depicting bifurcating roots. Lastly, we summa-
rize our contributions.

2. Local Orientation Representation
Edges, junctions and other transients are the key features

that make up an image. In order to afford denoising while
preserving these features, we exploit the local orientation
information obtained by Gabor filtering the images. Ga-
bor filters are well-known oriented filters which achieve the
lower limit of joint uncertainty in spatial and frequency do-
mains [6]. In this sense they are optimal in terms of space-

frequency localization. They have the advantage of being
tunable to any frequency or orientation and they can form a
relatively good approximation of a wavelet frame. Their use
for the analysis of local image structure has been explored
widely; [5] is a good example of this.

2.1. Steerable Gabor filters

The complex 3D oriented Gabor filter with a non-
spherical Gaussian envelope function has the following
generic form:

f(ξ;µ,Σ,Rν) =

|µ|2√
detΣ

exp

(

−|µ|2
2

(Rν
Tξ)TΣ−1Rν

Tξ

)

exp(iµT Rνξ)

(1)

where ξ = [x, y, z]T is the spatial coordinate vector, µ =
[fC 0 0]T is the wave vector which determines the center
frequency of the filter, Σ is a diagonal covariance matrix
with diagonal entries σ2

x > σ2
y = σ2

z that determines the
frequency bandwidths along the axes in Cartesian coordi-
nates and Rν is a 3D rotation matrix whose first column is
a unit vector ν. Note that the resulting filter has a constant
template ellipsoid determined by Σ and is oriented along
the orientation determined by ν. Therefore f(ξ;µ,Σ,Rν)
is a complex sinusoid modulated by a 3D Gaussian function
N(0, |µ|2RT

ν ΣRν) with some normalization factor. The
term |µ|2

|Σ|1/2
in Eq. (1) compensates for the frequency related

decrease in the power spectrum of images [3]. Since the
Fourier transform of a Gaussian function is again a Gaus-
sian function and rotations in the spatial domain correspond
to rotations in the frequency domain, the frequency re-
sponse of the complex Gabor function can be given by a sin-
gle Gaussian function N(RT

ν µ,Rν
T Σ−1Rν) with some

normalization term. Hence the Fourier transforms of the
real and imaginary parts of the complex filter are as follows:

F(Real{f}) ∝
N(RT

ν µ,Rν
T Σ−1Rν) + N(−RT

ν µ,Rν
T Σ−1Rν) (2)

F(Imag{f}) ∝
N(RT

ν µ,Rν
T Σ−1Rν) − N(−RT

ν µ,Rν
T Σ−1Rν) (3)

Since real and imaginary parts of the complex Gabor func-
tion are approximately in quadrature, the amplitude and
phase of the signal can be studied independently. The above
filters contain a DC component, i.e. their means are nonzero
which makes these filters sensitive to the gray level of the
image. This can be avoided by subtracting a scaled Gaus-
sian (with a factor of exp(− trace(Σ)

2 )) located at the origin
from Eq. (1). The behavior of this type of filter is similar to
the original filter. In fact, the effect of the additional term



forcing the DC response of the filter to zero is negligible
unless the frequency bandwidths are close to zero. To com-
pute the response of each filter, we employ steerability of
3D Gabor filters which allows arbitrarily oriented 3D Ga-
bor filters to be applied over a continuum of orientations.
Following the concept of steerable filters [5], a 3D oriented
Gabor filter can be approximated by a linear combination of
basis filters as follows:

fν(ξ) ≈
N

∑

j=1

kj(ν)gνj (ξ) = kT g (4)

where g = {gν1
, gν2

, ..., gνN
} denotes a set of basis filters

and k = {k1(ν), k2(ν), ..., kN (ν)} denotes a set of steer-
ing coefficients. We assume that the basis filters share the
same shape parameters and center frequency. The max-
imum likelihood estimate of the optimal steering coeffi-
cients k naturally leads to the L2 norm as a measure of
goodness of the fit. The corresponding quadratic program-
ming (QP) problem minimizing the residual sum of squares
min ‖fν − kT g‖2 can be efficiently solved by solving a
linear system Gk = γ where the matrix G and vector γ
consist of the inner products of rotated Gabor functions,
i.e. Gi,j = 〈gνi , gνj 〉 and γi = 〈fν , gνi〉. We formulate
the steerable 3D Gabor filters below. First, note that the
product of two Gaussian probability distributions is another
Gaussian (unnormalized).

N(µa,Σa) · N(µb,Σb) = zcN(µc,Σc) (5)

where Σc = (Σa
−1 + Σb

−1)−1 and µc = Σc(Σa
−1µa +

Σb
−1µb) and

zc = |2π(Σa + Σb)|−1/2 (6)

exp

(

−1

2
(µa − µb)

T (Σa + Σb)
−1(µa − µb)

)

So the inner product integral of two Gaussians is zc. Using
equations (2) and (3) and a symmetry argument, the inner
product integral of two even Gabor functions in frequency
space is

〈F(g1),F(g2)〉 ∝

2

∫

N(RT
ν1

µ,Rν1

T Σ−1Rν1
)N(RT

ν2
µ,Rν2

T Σ−1Rν2
)+

2

∫

N(RT
ν1

µ,Rν1

T Σ−1Rν1
)N(−RT

ν2
µ,Rν2

T Σ−1Rν2
)

Inner product integral of two odd Gabor functions can be
obtained similarly. After computing the inner products,we
can solve Gk = γ for the optimal steering coefficients
and then compute the filter for a specific orientation using
Eq. (4). All oriented filters are approximated equally well
in the sense of L2-norm.

3. The Mixture of Wisharts Model and Denois-
ing Kernel

We represent the orientation distribution at each lattice
point by a continuous mixture of oriented Gaussians. We
postulate that at each voxel there is an underlying probabil-
ity measure associated with the manifold of n×n symmetric
positive-definite matrices, Pn (by default P3). Let f(D) be
its density function with respect to some carrier measure dD

on Pn. Then the orientation energy can be modeled as:

S(ξ; g)/S0 =

∫

Pn

f(D) exp[−gT
Dg] dD , (7)

where S0 is the maximum orientation energy, ξ encodes the
spatial coordinates and g is a unit direction vector. Note
that Eq. (7) implies a continuous form of mixture model
with f(D) being a mixing density over the components in
the mixture.

Since gT
Dg in Eq.(7) can be replaced by trace(BD)

where B = ggT , the equation (7) can be expressed as the
Laplace transform (matrix variable case) [12]:

S(ξ; g)/S0 =

∫

Pn

exp(−trace(BD)) f(D)dD = (Lf )(B) ,

where Lf denotes the Laplace transform of a function f
which takes its argument as symmetric positive definite ma-
trices from Pn.

This expression naturally leads to an inverse problem:
recovering of a distribution defined on Pn that best explains
the observed orientation energy S(g). This is an ill-posed
problem and in general is intractable without prior knowl-
edge of the probabilistic structure. We consider the orienta-
tion tensor as random variable (matrix) belonging to some
known distribution family, which allows us to model the
uncertainty in the orientation tensor estimation. The orien-
tation tensor can be interpreted as the concentration matrix
(inverse of the covariance matrix) of the Gaussian distribu-
tion in the g-space. It is a common practice to put a Wishart
distribution (see definition below) prior, on the concentra-
tion matrix in multivariate analysis. Moreover, in the case
of a Wishart distribution, a closed form expression for the
Laplace transform exists and leads to a Rigaut-type asymp-
totic fractal law [16] which has been observed in many bio-
logical systems [8] (see explanation below).

Definition 1 [10] For Σ ∈ Pn and for p in
(

n−1
2 ,∞

)

, the
Wishart distribution γp,Σ with scale parameter Σ and shape
parameter p is defined as 1

dγp,Σ(Y) = Γn(p)−1 |Y|p−(n+1)/2 |Σ|−p e−trace(Σ−1
Y) dY,

where Γn is the multivariate gamma function and | · | is the
matrix determinant.

1Note that the correspondence between this definition and the conven-
tional Wishart distribution Wn(p, Σ) [14] is given simply by γp/2,2Σ =
Wn(p, Σ).



The Wishart distribution γp,Σ is known to have the closed-
form Laplace transform:

∫

e−trace(ΘY) dγp,Σ(Y) = (1 + trace(ΘΣ))−p , (8)

where (Θ + Σ−1) ∈ Pn. Let f in Eq. (7) be the density
function of γp,Σ with the expected value D̂ = pΣ. We have

S(ξ; g) = S0 (1 + (gT
D̂g)/p)−p . (9)

The single Wishart distribution model has a drawback in
that it cannot resolve the intra-voxel orientational hetero-
geneity due to the single diffusion maximum in the model.
Hence it is natural to use a discrete mixture of Wishart dis-
tribution model where the mixing distribution in Eq.(7) is
expressed as dF =

∑N
i=1 widγpi,Σi

. Note that the num-
ber of components in mixture, N , only depends on the dis-
cretization resolution and should not be interpreted as the
expected number of bifurcations. To estimate the numeri-
cal scale of the eigenvalues Di = pΣi, we first assume a
single Gaussian model S(ξ; g)/S0 = exp[−gT

Dg] and
then solve the D using linear regression. The trace of the
resulting D is used as a good estimation for the trace of Di.
In practice, we further assume that the two smaller eigen-
values of orientation tensors are equal and fix the ratio be-
tween the larger eigenvalue and the smaller one. Hence the
eigenvalues of Di can be determined on a voxel by voxel
basis. Furthermore, this rotational symmetry leads to a tes-
sellation where N unit vectors evenly distributed on the unit
sphere are chosen as the principal eigenvectors of Σi. For
K measurements with gj , the signal model equation:

S(ξ; g) = S0

N
∑

i=1

wi(1 + trace(BΣi))
−p (10)

yields a linear system Aw = s, where s = (S(ξ; g)/S0)
contains the normalized measurements, A is the matrix with
Aji = (1 + trace(BjΣi))

−p, and w = (wi) is the weight
vector to be estimated. This can be cast as a sparse decon-
volution problem formulated in a general form of as,

Aw = s + η, (11)

where η represents certain noise model. Under the assump-
tion that the measurement errors η are i.i.d. and normally
distributed, we use a non-negative least squares (NNLS)
minimization to solve for

min ‖Aw − s‖2 subject to w ≥ 0. (12)

The most used algorithm for NNLS was developed in [9,
Ch.23], which treats the linear inequality constraints using
an active set strategy. Though the sparsity constraint is not
explicitly imposed, the active set strategy tends to find the
sparse solution quickly if there exists such one. Addition-
ally, unlike other iterative methods mentioned, the output is

not susceptible to mis-tuning of the input parameters. After
w is estimated for orientations, we apply an iterative lo-
cal convolution at each lattice point with the kernel being a
continuous mixture of Gaussians formulated as

K(ξ,D) =

∫

Pn

f(D) exp[−ξT
Dξ] dD . (13)

We assume a discrete mixture of Wishart distribution model
for the mixing distribution in Eq.(13) which can be ex-
pressed as dF = f(D)dD =

∑N
i=1 widγpi,Σi

. Using
Laplace transform of the Wishart distribution, the kernel
model equation is given as

K(ξ,D) =

N
∑

i=1

wi(1 + trace((ξξT
Di)/p))−p . (14)

Here weights for Wisharts are obtained by w computed in
the first stage, namely local orientation estimation. When
p tends to ∞, this model reduces to a mixture of oriented
Gaussians with weight vector w.

4. Experimental Results
We first test the performance of the methods described

in the previous sections on the public domain images2

with various junctions, corners etc. For comparison pur-
poses, smoothing results obtained using the edge enhanc-
ing anisotropic diffusion method in [21] are presented. We
fixed the SNR to the value of the best result our method
gives and performed the experiments on edge enhancing
anisotropic diffusion until that ratio is reached. As it can
be seen in Figure 1, our method denoises the noisy clown
image while preserving the geometry of the details whereas
edge enhancing anisotropic diffusion does not preserve the
junctions (see the zoomed-in regions; our method preserves
details around the eye while smoothing elsewhere.).

In Figure 4, test results on real 3D MRI data consisting
of bean roots are shown. We display the probability map
of a bifurcation location using spherical harmonics repre-
sentation, which is embedded next to the denoising result.
This figure illustrates that the orientation distribution is con-
sistent with the computed probability map. Besides, it is
evident that our smoothing technique outperforms the com-
petitor; denoising is achieved without losing the essence of
the junctions in the roots. We also notice that the filling
in of missing directional structures is accomplished in our
method.

5. Conclusions
In this paper, we have treated the problem of denois-

ing with feature preservation and presented a mathemati-
cal model which relates images and probability distribu-
tions for positive definite matrix-valued random variables

2http://vision.cse.psu.edu/book/testbed/images/



(a)

(b)

(c)

(d)

Figure 1. (a) Clown image (of size 320x200 pixels) without noise
(b) Noisy image with a gaussian noise of zero mean and 0.07
standard deviation (c) Edge enhancing anisotropic diffusion, lo-
cal scale σ = 0.5, and 20 iterations (d) Our feature preserving
smoothing method in 4 iterations, SNR = 11.7dB

through Laplace transforms. We first extract the local orien-
tation information using steerable Gabor filters and then use
these filter responses to compute the weight of each proba-
bility density function in a continuous mixture of Gaussians
used to represent the geometry of the image function at
each lattice point. In order to generate a convolution kernel
for smoothing purposes, a continuous mixture of Gaussians
with the mixing distribution being a mixture of Wisharts
is used locally. We use the closed form expression for the
Laplace transform of Wishart distributions. We further note
that the traditional mixture of Gaussians model is the limit-
ing case of the orientation energy functional. A sparse de-
convolution technique is employed for computation of the
weights in the mixture of Wisharts model. The classic non-
negative least squares (NNLS) algorithm developed in [9]
is most suitable for our deconvolution problem in achiev-
ing sparseness and robustness. Finally, the experimental re-
sults on several publicly available images and an MRI data
set consisting of bifurcating bean roots have shown that the
proposed model provides better overall performance than
other state-of-the-art techniques for denoising.

(a) (b)

(c) (d)

Figure 2. (a) Real image (of size 128x128 pixels) without noise
(b) Noisy image with a gaussian noise of zero mean and 0.05 stan-
dard deviation (c) Edge enhancing anisotropic diffusion with lo-
cal scale σ = 0.5, and 20 iterations (d) Our feature preserving
smoothing method in 4 iterations, SNR = 12.1dB
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[20] D. Tschumperlé. Fast anisotropic smoothing of multi-valued
images using curvature-preserving pde’s. Int. J. Comput. Vi-
sion, 68(1):65–82, 2006.

[21] J. Weickert. Coherence-enhancing diffusion filtering. Int. J.
Comput. Vision, 31(2-3):111–127, 1999.

[22] T. P. Weldon, W. E. Higgins, and D. F. Dunn. Efficient gabor
filter design for texture segmentation. Pattern Recognition,
29(12):2005–2015, 1996.


